login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Primes that can be generated by the concatenation in base 4, in descending order, of two consecutive integers read in base 10.
1

%I #15 Dec 28 2024 12:16:37

%S 19,101,271,1429,1559,1949,2339,2729,3119,3769,4159,17989,18503,19531,

%T 21587,24671,27241,29297,30839,32381,33409,33923,36493,44203,47287,

%U 51913,55511,64763,286999,289049,293149,295199,301349,305449,323899,332099,336199,350549,375149

%N Primes that can be generated by the concatenation in base 4, in descending order, of two consecutive integers read in base 10.

%H Harvey P. Dale, <a href="/A287303/b287303.txt">Table of n, a(n) for n = 1..1000</a>

%e 3 and 4 in base 4 are 3 and 10 and concat(10,3) = 103 in base 10 is 19;

%e 5 and 6 in base 4 are 11 and 12 and concat(12,11) = 1211 in base 10 are 101.

%p with(numtheory): P:= proc(q,h) local a,b,c,d,k,n; a:=convert(q+1,base,h); b:=convert(q,base,h); c:=[op(a),op(b)]; d:=0; for k from nops(c) by -1 to 1 do d:=h*d+c[k]; od; if isprime(d) then d; fi; end: seq(P(i,4),i=1..1000);

%t With[{b = 4}, Select[Map[FromDigits[Flatten@ IntegerDigits[#, b], b] &, Reverse /@ Partition[Range[0, 370], 2, 1]], PrimeQ]] (* _Michael De Vlieger_, May 23 2017 *)

%t Select[Table[FromDigits[Join[IntegerDigits[n+1,4],IntegerDigits[n,4]],4],{n,1000}],PrimeQ] (* _Harvey P. Dale_, Dec 28 2024 *)

%Y Cf. A000040, A052089.

%K nonn,base,easy

%O 1,1

%A _Paolo P. Lava_, May 23 2017