Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Dec 27 2018 20:47:35
%S 1,1,2,5,15,47,150,481,1545,4965,15958,51293,164871,529947,1703418,
%T 5475329,17599457,56570281,181834970,584475733,1878691887,6038716423,
%U 19410365422,62391120801,200545011401,644615789581,2072001259342,6660074556205,21407609138375
%N Number of set partitions of [n] such that for each block all absolute differences between consecutive elements are <= three.
%H Alois P. Heinz, <a href="/A287275/b287275.txt">Table of n, a(n) for n = 0..1000</a>
%H Pierpaolo Natalini, Paolo Emilio Ricci, <a href="https://doi.org/10.3390/axioms7040071">New Bell-Sheffer Polynomial Sets</a>, Axioms 2018, 7(4), 71.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-2,-2,1).
%F G.f.: -(x^3-3*x+1)/((x-1)*(x^3-x^2-3*x+1)).
%F a(n) = A287214(n,3).
%F a(n) = A000110(n) for n <= 4.
%e a(5) = 47 = 52 - 5 = A000110(5) - 5 counts all set partitions of [5] except: 15|234, 15|23|4, 15|24|3, 15|2|34, 15|2|3|4.
%Y Column k=3 of A287214.
%Y Cf. A000110.
%K nonn,easy
%O 0,3
%A _Alois P. Heinz_, May 22 2017