Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Apr 29 2019 05:41:49
%S 1,1,1,5688,504508320,2029169127793680,333772217080092664473600,
%T 1966297518276227170017585421188600,
%U 474436367892839446541884570454351985506872320,4529567636413022031420100639004131328550592354551163392000,1664947024157601976065851576560401128416782438266187161307818265349050000
%N Number of inequivalent n X n matrices over an alphabet of size 6 under action of dihedral group of the square D_4, with one-sixth each of 1s, 2s, 3s, 4s, 5s and 6s (ordered occurrences rounded up/down if n^2 != 0 mod 6).
%C Computed using Polya's enumeration theorem for coloring.
%H María Merino, <a href="/A287239/b287239.txt">Table of n, a(n) for n = 0..34</a>
%H M. Merino and I. Unanue, <a href="https://doi.org/10.1387/ekaia.17851">Counting squared grid patterns with Pólya Theory</a>, EKAIA, 34 (2018), 289-316 (in Basque).
%F G.f.: g(x1,x2,x3,x4,x5,x6)=1/8*(y1^(n^2)+2*y1^n*y2^((n^2-n)/2)+3*y2^(n^2/2)+2*y4^(n^2/4)) if n even and 1/8*(y1^(n^2)+4*y1^n*y2^((n^2-n)/2)+y1*y2^((n^2-1)/2)+2*y1*y4^((n^2-1)/4)) if n odd, where coefficient correspond to y1=Sum_{i=1..6} x_i, y2=Sum_{i=1..6} x_i^2, y4=Sum_{i=1..6} x_i^4 and occurrences of numbers are ceiling(n^2/6) for the first k numbers and floor(n^2/6) for the last (6-k) numbers, if n^2 = k mod 6.
%e For n = 3 the a(3) = 5688 solutions are colorings of 3 X 3 matrices in 6 colors inequivalent under the action of D_4 with exactly 2 occurrences of each color (coefficient of x1^2 x2^2 x3^2 x4^2 x5^2 x6^2).
%Y Cf. A286392, A082963, A286447, A286525, A286526.
%K nonn
%O 0,4
%A _María Merino_, Imanol Unanue, May 22 2017