Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Dec 29 2018 09:36:51
%S 1,1,1,1,1,3,1,1,8,5,1,1,22,21,7,1,1,65,86,39,11,1,1,209,361,209,77,
%T 19,1,1,732,1584,1123,493,171,35,1,1,2780,7315,6153,3124,1293,413,67,
%U 1,1,11377,35635,34723,20019,9320,3709,1059,131,1,1,49863,183080,202852,130916,66992,30396,11373,2837,259,1
%N Number T(n,k) of set partitions of [n] such that the maximal absolute difference between the least elements of consecutive blocks equals k; triangle T(n,k), n>=0, 0<=k<=max(n-1,0), read by rows.
%C The maximal absolute difference is assumed to be zero if there are fewer than two blocks.
%C T(n,k) is defined for all n,k >= 0. The triangle contains only the positive terms. T(n,k) = 0 if k>=n and k>0.
%H Alois P. Heinz, <a href="/A287215/b287215.txt">Rows n = 0..141, flattened</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a>
%F T(n,k) = A287216(n,k) - A287216(n,k-1) for k>0, T(n,0) = 1.
%e T(4,0) = 1: 1234.
%e T(4,1) = 8: 134|2, 13|24, 14|23, 1|234, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4.
%e T(4,2) = 5: 124|3, 12|34, 12|3|4, 13|2|4, 1|23|4.
%e T(4,3) = 1: 123|4.
%e Triangle T(n,k) begins:
%e 1;
%e 1;
%e 1, 1;
%e 1, 3, 1;
%e 1, 8, 5, 1;
%e 1, 22, 21, 7, 1;
%e 1, 65, 86, 39, 11, 1;
%e 1, 209, 361, 209, 77, 19, 1;
%e 1, 732, 1584, 1123, 493, 171, 35, 1;
%p b:= proc(n, k, m, l) option remember; `if`(n<1, 1,
%p `if`(l-n>k, 0, b(n-1, k, m+1, n))+m*b(n-1, k, m, l))
%p end:
%p A:= (n, k)-> b(n-1, min(k, n-1), 1, n):
%p T:= (n, k)-> A(n, k)-`if`(k=0, 0, A(n, k-1)):
%p seq(seq(T(n, k), k=0..max(n-1, 0)), n=0..12);
%t b[n_, k_, m_, l_] := b[n, k, m, l] = If[n < 1, 1, If[l - n > k, 0, b[n - 1, k, m + 1, n]] + m*b[n - 1, k, m, l]];
%t A[n_, k_] := b[n - 1, Min[k, n - 1], 1, n];
%t T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k - 1]];
%t Table[T[n, k], {n, 0, 12}, {k, 0, Max[n - 1, 0]}] // Flatten (* _Jean-François Alcover_, May 19 2018, after _Alois P. Heinz_ *)
%Y Columns k=0-10 give: A000012, A003101(n-1), A322875, A322876, A322877, A322878, A322879, A322880, A322881, A322882, A322883.
%Y Row sums give A000110.
%Y T(2n,n) gives A322884.
%Y Cf. A287213, A287216, A287416, A287640.
%K nonn,tabf
%O 0,6
%A _Alois P. Heinz_, May 21 2017