login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of simple disconnected well-covered graphs on n nodes.
2

%I #12 Feb 22 2019 08:12:27

%S 0,1,2,4,8,19,56,208,1160,11240,218653,8226984

%N Number of simple disconnected well-covered graphs on n nodes.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DisconnectedGraph.html">Disconnected Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Well-CoveredGraph.html">Well-Covered Graph</a>

%F a(n) = A222626(n) - A222625(n).

%t A222626 = {1, 2, 3, 7, 14, 46, 164, 996, 10195, 208168, 8016530, 542165050};

%t mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];

%t EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i b[[i]] - Sum[c[[d]] b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d] c[[d]], {d, 1, i}]]]; Return[a]];

%t A222626 - EULERi[A222626] (* _Jean-François Alcover_, Feb 22 2019, after _Andrew Howroyd_ in A222625 *)

%Y Cf. A222625 (number of simple connected well-covered graphs on n vertices).

%Y Cf. A222626 (number of simple not necessarily connected well-covered graphs on n vertices).

%K nonn,more

%O 1,3

%A _Eric W. Weisstein_, May 18 2017

%E a(11)-a(12) from formula by _Falk Hüffner_, Aug 15 2017