login
A286935
Number of partitions of n into primes which are the difference of two consecutive cubes (A002407).
1
1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 2, 1, 1, 1, 0, 2, 0, 2, 1, 1, 1, 0, 2, 0, 2, 1, 1, 1, 1, 3, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 2, 3, 2, 3, 1, 3, 2, 2
OFFSET
0,57
FORMULA
G.f.: Product_{k>=1} 1/(1 - x^A002407(k)).
EXAMPLE
a(56) = 2 because we have [37, 19] and [7, 7, 7, 7, 7, 7, 7, 7].
MATHEMATICA
nmax = 100; CoefficientList[Series[Product[1/(1 - x^k), {k, Select[(Range[nmax] + 1)^3 - Range[nmax]^3, PrimeQ]}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 16 2017
STATUS
approved