Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #24 Apr 29 2019 08:24:58
%S 1,1,9,1,45,1701,1,405,134865,97135605,1,3321,10766601,70618411521,
%T 463255079498001,1,29889,871858485,51473762336565,3039416437115008521,
%U 179474497026544179696969,1,266085,70607782701,37523729625344145,19941610769429949618201,10597789568841677482963905405,5632099886234793715531013441442501
%N Triangle read by rows: T(n,m) is the number of pattern classes in the (n,m)-rectangular grid with 9 colors and n>=m, two patterns are in the same class if one of them can be obtained by a reflection or 180-degree rotation of the other.
%C Computed using Burnsides orbit-counting lemma.
%H María Merino, <a href="/A286920/b286920.txt">Rows n=0..33 of triangle, flattened</a>
%H M. Merino and I. Unanue, <a href="https://doi.org/10.1387/ekaia.17851">Counting squared grid patterns with Pólya Theory</a>, EKAIA, 34 (2018), 289-316 (in Basque).
%F For even n and m: T(n,m) = (9^(m*n) + 3*9^(m*n/2))/4;
%F for even n and odd m: T(n,m) = (9^(m*n) + 9^((m*n+n)/2) + 2*9^(m*n/2))/4;
%F for odd n and even m: T(n,m) = (9^(m*n) + 9^((m*n+m)/2) + 2*9^(m*n/2))/4;
%F for odd n and m: T(n,m) = (9^(m*n) + 9^((m*n+n)/2) + 9^((m*n+m)/2) + 9^((m*n+1)/2))/4.
%e Triangle begins:
%e ==========================================================
%e n\m | 0 1 2 3 4
%e ----|-----------------------------------------------------
%e 0 | 1
%e 1 | 1 9
%e 2 | 1 45 1701
%e 3 | 1 405 134865 97135605
%e 4 | 1 3321 10766601 70618411521 463255079498001
%e ...
%Y Cf. A225910, A283432, A283433, A283434, A286893, A286895, A286919.
%K nonn,tabl
%O 0,3
%A _María Merino_, Imanol Unanue, _Yosu Yurramendi_, May 16 2017