login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of minimal dominating sets in the grid graph P_3 X P_n.
2

%I #20 Aug 03 2017 14:52:31

%S 2,7,16,53,154,436,1268,3660,10610,30744,89079,258251,748420,2169219,

%T 6287336,18222901,52817261,153084840,443698814,1286012537,3727362387,

%U 10803344089,31312289784,90755170545,263043739916,762402920030,2209739758798,6404684091893

%N Number of minimal dominating sets in the grid graph P_3 X P_n.

%H Andrew Howroyd, <a href="/A286848/b286848.txt">Table of n, a(n) for n = 1..200</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GridGraph.html">Grid Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MinimalDominatingSet.html">Minimal Dominating Set</a>

%F G.f.: x*(2 + 3*x - 2*x^2 - x^3 + 4*x^4 + 10*x^5 - 14*x^6 - 32*x^7 - 29*x^8 - 2*x^9 - 21*x^10 - 140*x^11 - 140*x^12 + 126*x^13 + 80*x^14 + 127*x^15 + 143*x^16 + 695*x^17 + 401*x^18 + 462*x^19 + 582*x^20 - 8*x^21 - 490*x^22 - 660*x^23 - 721*x^24 - 960*x^25 - 714*x^26 - 925*x^27 + 25*x^28 + 206*x^29 + 255*x^30 + 494*x^31 + 155*x^32 + 443*x^33 - 118*x^34 + 80*x^35 - 71*x^36 - 172*x^37 + 78*x^38 - 105*x^39 + 79*x^40 + 7*x^41 - 28*x^42 + 33*x^43 - 7*x^44 - 4*x^45 + 3*x^46 - x^47) / (1 - 2*x - 2*x^2 - 4*x^3 + 8*x^4 - 2*x^5 - 2*x^6 - 23*x^7 + 14*x^8 + 31*x^9 + 31*x^10 - 45*x^11 + 50*x^12 + 83*x^13 + 122*x^14 - 141*x^15 - 54*x^16 - 105*x^17 + 36*x^18 - 85*x^19 - 275*x^20 - 222*x^21 + 63*x^22 + 90*x^23 - 140*x^24 + 253*x^25 + 399*x^26 + 234*x^27 + 190*x^28 - 87*x^29 + 59*x^30 - 219*x^31 - 222*x^32 - 189*x^33 - 270*x^34 + 152*x^35 + 56*x^36 + 123*x^37 + 158*x^38 - 41*x^39 + 75*x^40 - 62*x^41 - 12*x^42 + 21*x^43 - 30*x^44 + 7*x^45 + 4*x^46 - 3*x^47 + x^48) (conjectured). - _Colin Barker_, Aug 02 2017

%F a(n) = Sum_{k=1..48} c(k)*a(n-k), where c = (2, 2, 4, -8, 2, 2, 23, -14, -31, -31, 45, -50, -83, -122, 141, 54, 105, -36, 85, 275, 222, -63, -90, 140, -253, -399, -234, -190, 87, -59, 219, 222, 189, 270, -152, -56, -123, -158, 41, -75, 62, 12, -21, 30, -7, -4, 3, -1) (conjectured). - _Eric W. Weisstein_, Aug 02 2017

%Y Row 3 of A286847.

%K nonn

%O 1,1

%A _Andrew Howroyd_, Aug 01 2017