login
A286772
Decimal representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 221", based on the 5-celled von Neumann neighborhood.
4
1, 2, 0, 14, 1, 62, 1, 254, 1, 1022, 1, 4094, 1, 16382, 1, 65534, 1, 262142, 1, 1048574, 1, 4194302, 1, 16777214, 1, 67108862, 1, 268435454, 1, 1073741822, 1, 4294967294, 1, 17179869182, 1, 68719476734, 1, 274877906942, 1, 1099511627774, 1, 4398046511102, 1
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, May 14 2017: (Start)
G.f.: (1 + 2*x - 5*x^2 + 4*x^3 + 5*x^4 - 4*x^6) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 + 2*x)).
a(n) = 1 for n>2.
a(n) = 2^(n+1) - 2 for n>2.
a(n) = 5*a(n-2) - 4*a(n-4) for n>4.
(End)
It appears that a(n) = A280412(n) for n >= 3. - Michel Marcus, May 20 2017
MATHEMATICA
CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code = 221; stages = 128;
rule = IntegerDigits[code, 2, 10];
g = 2 * stages + 1; (* Maximum size of grid *)
a = PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca = a;
ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k = (Length[ca[[1]]] + 1)/2;
ca = Table[Table[Part[ca[[n]] [[j]], Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, May 14 2017
STATUS
approved