login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the number of zeros of the Chebyshev S(n, x) polynomial (A049310) in the open interval (-phi, +phi), with the golden section phi = (1 + sqrt(5))/2.
2

%I #19 Sep 08 2022 08:46:19

%S 0,1,2,3,2,3,4,5,6,5,6,7,8,9,8,9,10,11,12,11,12,13,14,15,14,15,16,17,

%T 18,17,18,19,20,21,20,21,22,23,24,23,24,25,26,27,26,27,28,29,30,29,30,

%U 31,32,33,32,33,34,35,36,35,36,37,38,39,38,39,40,41,42

%N a(n) is the number of zeros of the Chebyshev S(n, x) polynomial (A049310) in the open interval (-phi, +phi), with the golden section phi = (1 + sqrt(5))/2.

%C See a May 06 2017 comment on A049310 where these problems are considered which originated in a conjecture by _Michel Lagneau_ (see A008611) on Fibonacci polynomials.

%H G. C. Greubel, <a href="/A286717/b286717.txt">Table of n, a(n) for n = 0..5000</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,1,-1).

%F a(n) = 2*b(n) if n is even and 1 + 2*b(n) if n is odd with b(n) = floor(n/2) - floor((n+1)/6) = A286716(n). See the g.f. for {b(n)}_{n>=0} there.

%F From _Colin Barker_, May 18 2017: (Start)

%F G.f.: x*(1 + x + x^2 - x^3 + x^4) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)).

%F a(n) = a(n-1) + a(n-5) - a(n-6) for n>5.

%F (End)

%e a(4) = 2: S(4, x) = 1+x^4-3*x^2, and only two of the four zeros -phi, -1/phi, +1/phi, phi are in the open interval (-phi, +phi), the other two are at the borders.

%t CoefficientList[Series[x*(1+x+x^2-x^3+x^4)/((1-x)^2*(1+x+x^2+x^3+x^4)), {x, 0, 50}], x] (* _G. C. Greubel_, Mar 08 2018 *)

%t LinearRecurrence[{1,0,0,0,1,-1},{0,1,2,3,2,3},80] (* _Harvey P. Dale_, Aug 20 2020 *)

%o (PARI) concat(0, Vec(x*(1 + x + x^2 - x^3 + x^4) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)) + O(x^100))) \\ _Colin Barker_, May 18 2017

%o (Magma) m:=80; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(1+x+x^2-x^3+x^4)/((1-x)^2*(1+x+x^2+x^3+x^4)))); // _G. C. Greubel_, Mar 08 2018

%Y Cf. A008611(n-1) (1), A285869 (sqrt(2)), A285872 (sqrt(3)).

%K nonn,easy

%O 0,3

%A _Wolfdieter Lang_, May 13 2017