login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A053735(A048673(n)).
11

%I #15 Mar 23 2021 05:38:29

%S 1,2,1,3,2,4,2,4,3,3,3,5,1,5,2,5,2,4,2,4,2,4,3,6,5,6,3,6,4,7,3,6,3,3,

%T 3,5,3,5,5,5,4,3,4,5,4,6,1,7,5,6,4,7,2,8,4,7,4,5,3,8,4,4,4,7,4,6,2,4,

%U 5,6,3,6,4,6,5,6,4,6,4,6,7,5,3,4,5,7,6,6,5,5,4,7,3,8,1,8,5,6,3,7,6,7,2,8

%N a(n) = A053735(A048673(n)).

%H Antti Karttunen, <a href="/A286585/b286585.txt">Table of n, a(n) for n = 1..8192</a>

%F a(n) = A053735(A048673(n)).

%F For all n >= 0, a(A000079(n)) = n+1.

%o (Scheme) (define (A286585 n) (A053735 (A048673 n)))

%o (Python)

%o from sympy.ntheory.factor_ import digits

%o from sympy import factorint, nextprime

%o from operator import mul

%o def a053735(n): return sum(digits(n, 3)[1:])

%o def a048673(n):

%o f = factorint(n)

%o return 1 if n==1 else (1 + reduce(mul, [nextprime(i)**f[i] for i in f]))//2

%o def a(n): return a053735(a048673(n))

%o print([a(n) for n in range(1, 101)]) # _Indranil Ghosh_, Jun 12 2017

%Y Cf. A000079, A048673, A053735, A286582, A286583, A286584, A286586.

%K nonn

%O 1,2

%A _Antti Karttunen_, May 31 2017