%I #20 Feb 06 2018 11:45:45
%S 1,1,0,1,-1,0,1,-2,0,0,1,-3,1,-1,0,1,-4,3,-2,1,0,1,-5,6,-4,4,-1,0,1,
%T -6,10,-8,9,-4,1,0,1,-7,15,-15,17,-12,5,-1,0,1,-8,21,-26,30,-28,15,-6,
%U 2,0,1,-9,28,-42,51,-56,38,-21,9,-2,0,1,-10,36,-64,84
%N Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1 + x^j)^k.
%H Seiichi Manyama, <a href="/A286352/b286352.txt">Antidiagonals n = 0..139, flattened</a>
%F G.f. of column k: Product_{j>=1} 1/(1 + x^j)^k.
%e Square array begins:
%e 1, 1, 1, 1, 1, 1, ...
%e 0, -1, -2, -3, -4, -5, ...
%e 0, 0, 1, 3, 6, 10, ...
%e 0, -1, -2, -4, -8, -15, ...
%e 0, 1, 4, 9, 17, 30, ...
%Y Columns k=0-32 give: A000007, A081362, A022597-A022627.
%Y Main diagonal gives A255526.
%Y Antidiagonal sums give A299208.
%Y Cf. A286335.
%K sign,tabl
%O 0,8
%A _Seiichi Manyama_, May 08 2017