login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286346
Expansion of eta(q)^24 / eta(q^2)^12 in powers of q.
7
1, -24, 264, -1760, 7944, -25872, 64416, -133056, 253704, -472760, 825264, -1297056, 1938336, -2963664, 4437312, -6091584, 8118024, -11368368, 15653352, -19822176, 24832944, -32826112, 42517728, -51425088, 61903776, -78146664, 98021616, -115331264, 133522752
OFFSET
0,2
FORMULA
a(n) = (-1)^n * A000145(n).
Euler Transform of [-24, -12, -24, -12, -24, -12, -24, -12, ...]. - Simon Plouffe, Jun 23 2018
MATHEMATICA
nmax = 20; CoefficientList[Series[Product[((1 - x^k)/(1 + x^k))^12, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 10 2018 *)
a[n_] := (-1)^n SquaresR[12, n];
a /@ Range[0, 30] (* Jean-François Alcover, Feb 21 2021 *)
PROG
(PARI) q = 'q + O('q^50); Vec(eta(q)^24 / eta(q^2)^12) \\ Michel Marcus, Jul 07 2018
CROSSREFS
Cf. A000145, A013973 (E_6).
Sequence in context: A296916 A187380 A000145 * A126904 A001413 A022065
KEYWORD
sign
AUTHOR
Seiichi Manyama, May 08 2017
STATUS
approved