OFFSET
1,1
COMMENTS
a(6) > 10^7. - Michael De Vlieger, May 19 2017
a(6) > 10^13. - Giovanni Resta, Nov 12 2019
REFERENCES
M. F. Hasler, Posting to Sequence Fans Mailing List, May 06 2017
EXAMPLE
From Michael De Vlieger, May 19 2017: (Start)
A run of subsequent numbers with nondecreasing phi is of length 1 if it consists of a single number n with phi(n-1) > phi(n) > phi(n+1) (else n belongs to a run of length >= 2). This happens first for a(1) = 314.
Phi(14..18) = (6, 8, 8, 16, 6), therefore the first run of 4 numbers with nondecreasing phi(= A000010) starts at a(4) = 14. (End)
MATHEMATICA
Prepend[#, Module[{k = 2}, While[Sign@ Differences@ EulerPhi[k + {-1, 0, 1}] != {-1, -1}, k++]; k]] &@ Function[s, Function[r, If[Length@ # > 0, #[[1, 1]], -1] &@ Select[s, Length@ # == r &]] /@ Range@ Max@ Map[Length, s]]@ DeleteCases[SplitBy[MapIndexed[Function[k, (2 Boole[#1 <= #2] - 1) k & @@ #1]@ First@ #2 &, Partition[Array[EulerPhi, 10^7], 2, 1]], Sign], w_ /; First@ w < 0] (* Michael De Vlieger, May 19 2017 *)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, May 16 2017
STATUS
approved