login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(0) = 0; thereafter, a(n) = (2*n-1)*a(n-1) + 1.
7

%I #34 Feb 13 2024 08:14:04

%S 0,1,4,21,148,1333,14664,190633,2859496,48611433,923617228,

%T 19395961789,446107121148,11152678028701,301122306774928,

%U 8732546896472913,270708953790660304,8933395475091790033,312668841628212651156,11568747140243868092773

%N a(0) = 0; thereafter, a(n) = (2*n-1)*a(n-1) + 1.

%H Seiichi Manyama, <a href="/A286286/b286286.txt">Table of n, a(n) for n = 0..404</a>

%F a(n) = (2*n-1)!! * Sum_{k=1..n} 1/(2*k-1)!!. - _Seiichi Manyama_, Sep 02 2017

%F a(n) = floor((2*n-1)!!*A060196), for n > 0. - _Peter McNair_, Dec 10 2021

%F From _Peter Bala_, Feb 09 2024: (Start)

%F a(n) = 2*n*a(n-1) - (2*n - 3)*a(n-2) with a(0) = 0 and a(1) = 1.

%F The double factorial numbers (2*n-1)!! = A001147(n) satisfy the same recurrence, leading to the generalized continued fraction expansion Limit_{n -> oo} a(n)/(2*n-1)!! = Sum_{k >= 1} 1/(2*k-1)!! = A060196 = 1/(1 - 1/(4 - 3/(6 - 5/(8 - 7/(10 - 9/(12 - ... )))))). (End)

%t NestList[{(2 #2 - 1) #1 + 1, #2 + 1} & @@ # &, {0, 1}, 19][[All, 1]] (* _Michael De Vlieger_, Dec 10 2021 *)

%Y Conjectured to give indices of records in A132424.

%Y Cf. A001147, A002627 (similar sequence), A000522, A060196.

%K nonn,easy

%O 0,3

%A _N. J. A. Sloane_, May 15 2017