login
Number of orientable regular maps on a surface of genus n.
1

%I #28 Nov 23 2024 03:33:50

%S 6,12,12,16,13,12,11,32,24,14,11,22,12,23,17,40,14,35,13,40,18,11,17,

%T 44,16,18,38,32,13,24,13,84,19,20,30,55,12,21,24,72,15,27,12,44,37,13,

%U 17,107,18,35,18,28,20,57,25,72,18,11,20,37,11,26,43,142,23

%N Number of orientable regular maps on a surface of genus n.

%D Marston Conder, Email to N. J. A. Sloane, May 08 2017

%H Marston Conder, <a href="/A286273/b286273.txt">Table of n, a(n) for n = 2..301</a>

%H Marston Conder and P. Dobcsányi, <a href="https://doi.org/10.1006/jctb.2000.2008">Determination of all regular maps of small genus</a>, J. Combinatorial Theory, Series B, 81 (2001), 224-242.

%H Marston Conder, <a href="https://doi.org/10.1016/j.jctb.2008.09.003">Regular maps and hypermaps of Euler characteristic -1 to -200</a>, J. Combinatorial Theory, Series B, 99 (2009), 455-459.

%H Marston Conder, <a href="https://www.math.auckland.ac.nz/~conder/">Home Page</a> (Contains tables of regular maps, hypermaps and polytopes, trivalent symmetric graphs, and surface actions)

%H Marston Conder, <a href="https://www.math.auckland.ac.nz/~conder/RegularOrientableMaps101.txt">Regular orientable maps of genus 2 to 101</a> (I think this is superseded by the next link)

%H Marston Conder, <a href="https://www.math.auckland.ac.nz/~conder/RegularOrientableMaps301.txt">Regular orientable maps of genus 2 to 301</a>

%K nonn,changed

%O 2,1

%A _N. J. A. Sloane_, May 08 2017