Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Nov 28 2024 09:14:13
%S 3,13,51,167,503,1441,4007,10923,29355,78037,205659,538127,1399583,
%T 3621289,9327695,23931603,61186131,155949085,396369795,1004904695,
%U 2541896519,6416348209,16165610999,40657256571,102090514683,255968753125,640899345579,1602640560479
%N Number of connected induced (non-null) subgraphs of the prism graph with 2n nodes.
%C Cases n=1 and n=2 correspond to degenerate prism graphs, but they fit the same (conjectured) linear recurrence as the other terms.
%H Andrew Howroyd, <a href="/A286182/b286182.txt">Table of n, a(n) for n = 1..200</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PrismGraph.html">Prism Graph</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Vertex-InducedSubgraph.html">Vertex-Induced Subgraph</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6, -11, 4, 5, -2, -1).
%F a(n) = 6*a(n-1) - 11*a(n-2) + 4*a(n-3) + 5*a(n-4) - 2*a(n-5) - a(n-6), for n > 6 (conjectured).
%F a(n) = A002203(n) + 3*n*A000129(n) - 3*n + 1 (conjectured). - _Eric W. Weisstein_, May 08 2017
%F G.f.: x*(3 - 5*x + 6*x^2 - 8*x^3 - 5*x^4 - 3*x^5) / ((1 - x)^2*(1 - 2*x - x^2)^2) (conjectured). - _Colin Barker_, May 31 2017
%t a[n_] := Block[{g = Graph@ Flatten@ Table[{i <-> Mod[i,n] + 1, n+i <-> Mod[i,n] + n+1, i <-> i+n}, {i, n}]}, -1 + ParallelSum[ Boole@ ConnectedGraphQ@ Subgraph[g, s], {s, Subsets@Range[2 n]}]]; Array[a, 8]
%Y Cf. A020873 (wheel), A059020 (ladder), A059525 (grid), A286139 (king), A286183 (antiprism), A286184 (helm), A286185 (Möbius ladder), A286186 (friendship), A286187 (web), A286188 (gear), A286189 (rook), A285765 (queen).
%K nonn
%O 1,1
%A _Giovanni Resta_, May 04 2017
%E Terms a(18) and beyond from _Andrew Howroyd_, Aug 15 2017