login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations of [n] with nonincreasing cycle sizes.
8

%I #11 May 24 2018 02:56:25

%S 1,1,2,5,19,85,496,3229,25117,215225,2100430,22187281,261228199,

%T 3284651245,45163266604,659277401525,10380194835601,172251467909809,

%U 3057368096689690,56867779157145769,1122474190194034555,23137433884903034501,502874858021076645784

%N Number of permutations of [n] with nonincreasing cycle sizes.

%C Each cycle is written with the smallest element first and cycles are arranged in increasing order of their first elements.

%C a(n) is even if and only if n in { A016825 }.

%H Alois P. Heinz, <a href="/A286071/b286071.txt">Table of n, a(n) for n = 0..450</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation">Permutation</a>

%e a(3) = 5: (123), (132), (12)(3), (13)(2), (1)(2)(3).

%e a(4) = 19: (1234), (1243), (1324), (1342), (1423), (1432), (123)(4), (132)(4), (124)(3), (142)(3), (12)(34), (12)(3)(4), (134)(2), (143)(2), (13)(24), (13)(2)(4), (14)(23), (14)(2)(3), (1)(2)(3)(4).

%p b:= proc(n, i) option remember; `if`(n=0, 1, add((j-1)!*

%p b(n-j, j)*binomial(n-1, j-1), j=1..min(n, i)))

%p end:

%p a:= n-> b(n$2):

%p seq(a(n), n=0..30);

%t b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[(j - 1)!*b[n - j, j]*Binomial[n - 1, j - 1], {j, 1, Min[n, i]}]];

%t a[n_] := b[n, n];

%t Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, May 24 2018, translated from Maple *)

%Y Cf. A016825, A275310, A286072, A286073, A286074, A286075, A286076, A286077.

%K nonn

%O 0,3

%A _Alois P. Heinz_, May 01 2017