login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286069
Independence and clique covering number of the n X n antelope graph.
1
1, 4, 9, 16, 21, 24, 25, 36, 48, 60, 72, 84, 92, 98, 113, 132, 153, 168, 185, 200, 221, 242, 265, 288, 313, 338, 365, 392, 421, 450, 481, 512, 545, 578, 613, 648, 685, 722, 761, 800, 841, 882, 925, 968, 1013, 1058, 1105, 1152, 1201, 1250, 1301, 1352, 1405, 1458, 1513
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Antelope Graph.
Eric Weisstein's World of Mathematics, Clique Covering Number.
Eric Weisstein's World of Mathematics, Independence Number.
FORMULA
a(n) = 2*(a-1) - 2*a(n-3) + a(n-4) for n >= 24. - Eric W. Weisstein, Apr 19 2019
G.f.: x*(1 + 2*x + x^2 - 4*x^4 - 4*x^5 + 12*x^7 + 3*x^8 - 10*x^9 - x^10 - 4*x^12 - 2*x^13 + 13*x^14 + 6*x^15 - 7*x^16 - 10*x^17 + 4*x^19 + 4*x^20 + 2*x^21 - 4*x^22) / ((1 - x)^3*(1 + x)). - Colin Barker, Apr 19 2019
MATHEMATICA
Table[Length@First@FindIndependentVertexSet[RelationGraph[Sort[Abs[Subtract[##]]] == {3, 4} &, Tuples[Range[n], 2]]], {n, 13}]
Join[{1, 4, 9, 16, 21, 24, 25, 36, 48, 60, 72, 84, 92, 98, 113, 132, 153, 168, 185}, LinearRecurrence[{2, 0, -2, 1}, {1, 2, 5, 8}, {20, 40}]]
PROG
(PARI) Vec(x*(1 + 2*x + x^2 - 4*x^4 - 4*x^5 + 12*x^7 + 3*x^8 - 10*x^9 - x^10 - 4*x^12 - 2*x^13 + 13*x^14 + 6*x^15 - 7*x^16 - 10*x^17 + 4*x^19 + 4*x^20 + 2*x^21 - 4*x^22) / ((1 - x)^3*(1 + x)) + O(x^60)) \\ Colin Barker, Apr 19 2019
CROSSREFS
Sequence in context: A313340 A010461 A010421 * A010445 A155570 A313341
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Jun 15 2017
EXTENSIONS
Extended by Eric W. Weisstein, Apr 18 2019
STATUS
approved