login
a(n) = 3*T(A285984(n)), where T(m) is the m-th triangular number A000217(m).
4

%I #16 May 04 2017 16:21:51

%S 0,18315,210375,17232775560,197941645440,16214284059063255,

%T 186242898311223435,15255987442587265956120,175235570535035566127880,

%U 14354328072739259079522561195,164878797845087651200279041495,13505958574968967401962031517525680,155134131134672045268505114018663320

%N a(n) = 3*T(A285984(n)), where T(m) is the m-th triangular number A000217(m).

%C This sequence a(n) gives the solutions x of the 3rd degree Diophantine Bachet-Mordell equation y^2=x^3+K, with y = T(b(n))*sqrt(27*T(b(n))+1) = A286036(n) and K = (T(b(n)))^2 = A286037(n), the square of the triangular number of b(n)= A285984(n).

%D V. Pletser, On some solutions of the Bachet-Mordell equation for large parameter values, to be submitted, April 2017.

%H Vladimir Pletser, <a href="/A286035/b286035.txt">Table of n, a(n) for n = 0..1000</a>

%H M.A. Bennett and A. Ghadermarzi, <a href="http://www.math.ubc.ca/~bennett/BeGa-data.htm">Data on Mordell's curve</a>.

%H Michael A. Bennett, Amir Ghadermarzi, <a href="https://arxiv.org/abs/1311.7077">Mordell's equation : a classical approach</a>, arXiv:1311.7077 [math.NT], 2013.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MordellCurve.html">Mordell Curve</a>

%F Since b(n) = 264*sqrt(27*T(b(n-2))+1)+ b(n-4) = 264*sqrt(27*(b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4), with b(-2)=110, b(-1)=0, b(0)=0, b(1)=110 (see A285984) and a(n) = 3*T(b(n)) (this sequence), one has :

%F a(n) = 3*[264*sqrt(27*(b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4) ]*[ 264*sqrt(27*(b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4)+1]/2.

%F Empirical g.f.: 495*x*(37 + 388*x + 37*x^2) / ((1 - x)*(1 - 970*x + x^2)*(1 + 970*x + x^2)). - _Colin Barker_, May 01 2017

%e For n = 2, b(n) = 374, a(n)= 210375.

%e For n = 3, b(n) = A285984(n) =107184. Therefore, a(n) = 3*T(b(n)) = 3*A000217(A285984(n)) = 3*A000217(107184) = 3*5744258520=17232775560.

%p restart: bm2:=110: bm1:=0: b0:=0: bp1:=110: print ('0,0','1,18315'); for n from 2 to 1000 do b:= 264*sqrt(27* (b0^2+b0)/2+1)+bm2; a:=3*b*(b+1)/2;print(n,a); bm2:=bm1; bm1:=b0; b0:=bp1; bp1:=b; end do:

%Y Cf. A285984, A286036, A286037, A285955, A006454, A000217, A006451, A081119, A054504

%K nonn,easy

%O 0,2

%A _Vladimir Pletser_, May 01 2017