login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ordered set partitions of [n] into ten blocks such that equal-sized blocks are ordered with increasing least elements.
3

%I #11 May 17 2018 08:02:09

%S 1,550,69025,4254250,201371170,7180042870,196518086050,4766802769300,

%T 102889172957285,2006511403380770,36104901766271975,

%U 597121503366547250,9381072363234242330,140940747710164417070,2033219852450765548790,28025263737301449789500

%N Number of ordered set partitions of [n] into ten blocks such that equal-sized blocks are ordered with increasing least elements.

%H Alois P. Heinz, <a href="/A285925/b285925.txt">Table of n, a(n) for n = 10..700</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a>

%p b:= proc(n, i, p) option remember; series(`if`(n=0 or i=1,

%p (p+n)!/n!*x^n, add(x^j*b(n-i*j, i-1, p+j)*combinat

%p [multinomial](n, n-i*j, i$j)/j!^2, j=0..n/i)), x, 11)

%p end:

%p a:= n-> coeff(b(n$2, 0), x, 10):

%p seq(a(n), n=10..30);

%t multinomial[n_, k_List] := n!/Times @@ (k!);

%t b[n_, i_, p_] := b[n, i, p] = Series[If[n == 0 || i == 1, (p + n)!/n!*x^n, Sum[x^j*b[n - i*j, i - 1, p + j]*multinomial[n, Join[{n - i*j}, Table[i, j]]]/j!^2, {j, 0, n/i}]], {x, 0, 11}];

%t a[n_] := Coefficient[b[n, n, 0], x, 10];

%t Table[a[n], {n, 10, 30}] (* _Jean-François Alcover_, May 17 2018, translated from Maple *)

%Y Column k=10 of A285824.

%Y Cf. A285861.

%K nonn

%O 10,2

%A _Alois P. Heinz_, Apr 28 2017