Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #38 Dec 23 2024 14:53:45
%S 5,7,13,17,31,37,97,127,257,881,4651,8191,65537,131071,524287,1273609,
%T 2147483647,2305843009213693951,618970019642690137449562111,
%U 3512911982806776822251393039617,162259276829213363391578010288127,170141183460469231731687303715884105727
%N Primes of the form (1 + x)^y + (-x)^y where x is a divisor of y.
%C If x = y then: 13, 37, 881, 4651, 1273609, ...
%C Primes of the form (1 + x)^y - x^y where y is divisor of x: 3, 5, 7, 31, 37, 127, 4651, 8191, 131071, 524287, ..., which is A285887.
%H Georg Fischer, <a href="/A285886/b285886.txt">Table of n, a(n) for n = 1..23</a>
%H J. S. Gerasimov, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2014-August/013480.html">x^(y + 1) - y^x</a>, SeqFan list, Aug 18 2014.
%e 5 is in this sequence because (1 + 1)^2 + (-1)^2 = 5 is prime where 1 is a divisor of 2.
%e A complete list of (x, y, p) corresponding to the shown data is
%e (1,2,5), (1,3,7), (2,2,13), (1,4,17), (1,5,31), (3,3,37), (2,4,97),(1,7,127), (1,8,257), (4,4,881), (5,5,4651), (1,13,8191), (1,16,65537),
%e (1,17,131071), (1,19,524287), (7,7,1273609), (1,31,2147483647),
%e (1,61,2305843009213693951), (1,89,618970019642690137449562111),
%e (8,32,3512911982806776822251393039617),
%e (1,107,162259276829213363391578010288127),
%e (1,127,170141183460469231731687303715884105727).
%e Further terms correspond to (x,y) = {(1,521), (1,607), (167,167), (1,1279), (1,2203), (1,2281), (1,3217), ...}. - _Hugo Pfoertner_, Jan 12 2020
%t Union@ Flatten@ Table[Select[Map[(1 + #)^n + (-#)^n &, Divisors@ n], PrimeQ], {n, 150}] (* _Michael De Vlieger_, Apr 29 2017 *)
%Y Cf. A000668 (Mersenne primes), A019434 (Fermat primes), A243100, A285887, A285888.
%K nonn
%O 1,1
%A _Juri-Stepan Gerasimov_, Apr 27 2017
%E Edited by _N. J. A. Sloane_, Jan 11 2020