login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations of [2n] with n ordered cycles such that equal-sized cycles are ordered with increasing least elements.
4

%I #17 May 29 2018 08:28:07

%S 1,1,19,1005,62601,6061545,868380535,142349568361,27564092244689,

%T 6325532235438273,1673378033771898675,505141951803309946125,

%U 170002056228253072537065,63255335047795174479833625,25805276337820748477042392695,11427131417576257617280878155625

%N Number of permutations of [2n] with n ordered cycles such that equal-sized cycles are ordered with increasing least elements.

%H Alois P. Heinz, <a href="/A285862/b285862.txt">Table of n, a(n) for n = 0..200</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation">Permutation</a>

%F a(n) = A285849(2n,n).

%e a(1) = 1: (12).

%e a(2) = 19: (123)(4), (4)(123), (132)(4), (4)(132), (124)(3), (3)(124), (142)(3), (3)(142), (134)(2), (2)(134), (143)(2), (2)(143), (1)(234), (234)(1), (1)(243), (243)(1), (12)(34), (13)(24), (14)(23).

%p b:= proc(n, i, p) option remember; expand(`if`(n=0 or i=1,

%p (p+n)!/n!*x^n, add(b(n-i*j, i-1, p+j)*(i-1)!^j*combinat

%p [multinomial](n, n-i*j, i$j)/j!^2*x^j, j=0..n/i)))

%p end:

%p a:= n-> coeff(b(2*n$2, 0), x, n):

%p seq(a(n), n=0..20);

%t multinomial[n_, k_List] := n!/Times @@ (k!);

%t b[n_, i_, p_] := b[n, i, p] = Expand[If[n == 0 || i == 1, (p + n)!/n!*x^n, Sum[b[n - i*j, i - 1, p + j]*(i - 1)!^j*multinomial[n, Join[{n - i*j}, Table[i, j]]]/j!^2*x^j, {j, 0, n/i}]]];

%t a[n_] := Coefficient[b[2n, 2n, 0], x, n];

%t Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, May 29 2018, from Maple *)

%Y Cf. A187646, A285849, A285926.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Apr 27 2017