login
A285834
Decimal representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 107", based on the 5-celled von Neumann neighborhood.
4
1, 3, 3, 15, 6, 63, 12, 255, 30, 1023, 62, 4095, 126, 16383, 254, 65535, 510, 262143, 1022, 1048575, 2046, 4194303, 4094, 16777215, 8190, 67108863, 16382, 268435455, 32766, 1073741823, 65534, 4294967295, 131070, 17179869183, 262142, 68719476735, 524286
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, Apr 28 2017: (Start)
G.f.: (1+3*x-4*x^2-6*x^3-x^4+4*x^6+6*x^8-28*x^10+16*x^12) / ((1-x)*(1+x)*(1-2*x)*(1+2*x)*(1-2*x^2)).
a(n) = 7*a(n-2) - 14*a(n-4) + 8*a(n-6) for n>6.
(End)
MATHEMATICA
CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code = 107; stages = 128;
rule = IntegerDigits[code, 2, 10];
g = 2 * stages + 1; (* Maximum size of grid *)
a = PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca = a;
ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k = (Length[ca[[1]]] + 1)/2;
ca = Table[Table[Part[ca[[n]] [[j]], Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
LinearRecurrence[{0, 7, 0, -14, 0, 8}, {1, 3, 3, 15, 6, 63, 12, 255, 30, 1023, 62, 4095, 126}, 40] (* Harvey P. Dale, Feb 28 2023 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Apr 27 2017
STATUS
approved