login
Expansion of r(q)^3 / r(q^3) in powers of q where r() is the Rogers-Ramanujan continued fraction.
5

%I #9 Apr 23 2017 10:09:57

%S 1,-3,6,-6,0,12,-24,27,-15,-12,48,-81,90,-54,-36,159,-258,267,-138,

%T -123,441,-684,693,-354,-318,1122,-1701,1668,-801,-792,2616,-3876,

%U 3753,-1782,-1776,5778,-8451,8046,-3705,-3843,12120,-17496,16506,-7524,-7848,24483

%N Expansion of r(q)^3 / r(q^3) in powers of q where r() is the Rogers-Ramanujan continued fraction.

%H Seiichi Manyama, <a href="/A285628/b285628.txt">Table of n, a(n) for n = 0..10000</a>

%Y r(q)^k / r(q^k): A285349 (k=2), this sequence (k=3), A285629 (k=4), A285630 (k=5).

%Y Cf. A285583.

%K sign

%O 0,2

%A _Seiichi Manyama_, Apr 22 2017