login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numbers k such that (47*10^k + 403)/9 is prime.
0

%I #12 Jun 08 2024 15:41:38

%S 1,4,10,12,16,28,42,108,127,664,744,781,3036,3184,4753,5695,7350,8592,

%T 8694,15939,21822,24466,61821,196281

%N Numbers k such that (47*10^k + 403)/9 is prime.

%C For k > 1, numbers k such that the digit 5 followed by k-2 occurrences of the digit 2 followed by the digits 67 is prime (see Example section).

%C a(25) > 2*10^5.

%H Makoto Kamada, <a href="https://stdkmd.net/nrr">Factorization of near-repdigit-related numbers</a>.

%H Makoto Kamada, <a href="https://stdkmd.net/nrr/prime/prime_difficulty.txt">Search for 52w67</a>.

%e 4 is in this sequence because (47*10^4 + 403)/9 = 52267 is prime.

%e Initial terms and associated primes:

%e a(1) = 1, 97;

%e a(2) = 4, 52267;

%e a(3) = 10, 52222222267;

%e a(4) = 12, 5222222222267;

%e a(5) = 16, 52222222222222267; etc.

%t Select[Range[0, 100000], PrimeQ[(47*10^# + 403)/9] &]

%Y Cf. A056654, A268448, A269303, A270339, A270613, A270831, A270890, A270929, A271269.

%K nonn,more,hard

%O 1,2

%A _Robert Price_, Apr 21 2017

%E a(24) from _Robert Price_, Mar 07 2019