login
Expansion of q^(-2/5) * (r(q^2) + r(q)^2) / 2 in powers of q where r() is the Rogers-Ramanujan continued fraction.
3

%I #11 Apr 21 2017 12:15:21

%S 1,-1,1,-1,0,2,-3,3,-2,-1,5,-8,8,-5,-2,12,-18,18,-11,-5,24,-37,37,-21,

%T -10,47,-72,71,-40,-19,88,-133,131,-73,-35,156,-236,232,-127,-61,270,

%U -407,397,-216,-104,455,-682,664,-359,-172,747,-1117,1084,-582,-279

%N Expansion of q^(-2/5) * (r(q^2) + r(q)^2) / 2 in powers of q where r() is the Rogers-Ramanujan continued fraction.

%H Seiichi Manyama, <a href="/A285555/b285555.txt">Table of n, a(n) for n = 0..10000</a>

%F a(2n) = (A007325(n) + A055101(2n)) / 2, a(2n+1) = A055101(2n+1) / 2.

%Y Cf. A007325, A055101, A112274, A285554.

%K sign

%O 0,6

%A _Seiichi Manyama_, Apr 21 2017