Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Apr 20 2017 15:15:41
%S 1,1,2,3,2,5,3,5,2,3,2,7,2,3,7,5,3,5,2,11,5,7,5,13,2,5,2,5,2,11,3,5,5,
%T 3,3,7,2,3,7,11,3,11,3,7,7,5,5,13,3,3,5,5,2,5,3,11,5,3,2,13,2,3,5,5,3,
%U 7,2,5,5,19,7,13,5,5
%N a(n) = smallest integer m>0 such that the positive integers not exceeding m and coprime to n generate the multiplicative group U(Z/nZ).
%C Denoted G(n) in Burthe (1997).
%C If A046145(n)>0, then a(n) <= A046145(n).
%C For all n>=3, a(n) is prime.
%H Burthe, R. J., Jr. <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa80/aa8042.pdf">Upper bounds for least witnesses and generating sets</a>. Acta Arith. 80:4 (1997), 311-326.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Multiplicative_group_of_integers_modulo_n">Multiplicative group of integers modulo n</a>.
%o (PARI) { A285512(n) = my(S,s,t); S=Set([Mod(1,n)]); t=1; while( #S!=eulerphi(n), until(n%t,t=nextprime(t+1)); until(#S==s, s=#S; S=setunion(S,Set(S*t))); ); t; }
%Y Cf. A002997, A046145, A285513, A285514.
%K nonn
%O 1,3
%A _Max Alekseyev_ and _Thomas Ordowski_, Apr 20 2017