login
A285369
Sum of the entries in the seventh blocks of all set partitions of [n].
2
7, 232, 4518, 67898, 875365, 10228471, 111964040, 1173487986, 11959590504, 119889568676, 1192711559418, 11859084564254, 118526150123309, 1196311505171568, 12239696866561282, 127315711586330538, 1349476206629576995, 14599608027440148129, 161399084259928978190
OFFSET
7,1
LINKS
FORMULA
a(n) = A285362(n,7).
MAPLE
a:= proc(h) option remember; local b; b:=
proc(n, m) option remember;
`if`(n=0, [1, 0], add((p-> `if`(j=7, p+ [0,
(h-n+1)*p[1]], p))(b(n-1, max(m, j))), j=1..m+1))
end: b(h, 0)[2]
end:
seq(a(n), n=7..30);
MATHEMATICA
a[h_] := a[h] = Module[{b}, b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[Function[p, If[j == 7, p + {0, (h - n + 1)*p[[1]]}, p]][b[n - 1, Max[m, j]]], {j, 1, m + 1}]]; b[h, 0][[2]]];
Table[a[n], {n, 7, 30}] (* Jean-François Alcover, May 27 2018, from Maple *)
CROSSREFS
Column k=7 of A285362.
Sequence in context: A142116 A201955 A081618 * A287042 A160491 A120661
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 17 2017
STATUS
approved