Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 May 27 2018 08:10:43
%S 4,55,495,3757,26421,180482,1230737,8520912,60531347,444006008,
%T 3374292280,26605751388,217686862402,1847108846441,16237616979723,
%U 147709622593855,1388722474550671,13477574785475778,134861358322272607,1389822348657508142,14735739124218384875
%N Sum of the entries in the fourth blocks of all set partitions of [n].
%H Alois P. Heinz, <a href="/A285366/b285366.txt">Table of n, a(n) for n = 4..400</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a>
%F a(n) = A285362(n,4).
%p a:= proc(h) option remember; local b; b:=
%p proc(n, m) option remember;
%p `if`(n=0, [1, 0], add((p-> `if`(j=4, p+ [0,
%p (h-n+1)*p[1]], p))(b(n-1, max(m, j))), j=1..m+1))
%p end: b(h, 0)[2]
%p end:
%p seq(a(n), n=4..30);
%t a[h_] := a[h] = Module[{b}, b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[Function[p, If[j == 4, p + {0, (h - n + 1)*p[[1]]}, p]][b[n - 1, Max[m, j]]], {j, 1, m + 1}]]; b[h, 0][[2]]];
%t Table[a[n], {n, 4, 30}] (* _Jean-François Alcover_, May 27 2018, from Maple *)
%Y Column k=4 of A285362.
%K nonn
%O 4,1
%A _Alois P. Heinz_, Apr 17 2017