login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285293
Expansion of Product_{k>=1} (1 + x^k)^k / (1 + x^(5*k))^(5*k).
4
1, 1, 2, 5, 8, 11, 23, 39, 58, 102, 160, 250, 392, 614, 929, 1426, 2155, 3221, 4816, 7124, 10516, 15389, 22448, 32549, 47027, 67586, 96779, 138052, 196078, 277606, 391570, 550516, 771442, 1077818, 1501214, 2084899, 2887759, 3988792, 5495381, 7552127, 10353345
OFFSET
0,3
COMMENTS
In general, if m > 1 and g.f. = Product_{k>=1} (1 + x^k)^k / (1 + x^(m*k))^(m*k), then a(n, m) ~ exp(2^(-4/3) * 3^(4/3) * (1-1/m)^(1/3) * Zeta(3)^(1/3) * n^(2/3)) * 2^(m/12 - 3/4) * (1-1/m)^(1/6) * Zeta(3)^(1/6) / (3^(1/3) * sqrt(Pi) * n^(2/3)).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Vaclav Kotesovec)
FORMULA
a(n) ~ exp(2^(-2/3) * 3^(4/3) * 5^(-1/3) * Zeta(3)^(1/3) * n^(2/3)) * Zeta(3)^(1/6) / (3^(1/3) * 5^(1/6) * sqrt(Pi) * n^(2/3)).
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1+x^k)^k/(1+x^(5*k))^(5*k), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
Cf. A262736 (m=2), A262924 (m=3), A285292 (m=4).
Sequence in context: A018846 A261578 A264613 * A246442 A056661 A229883
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Apr 16 2017
STATUS
approved