%I #10 Apr 15 2017 19:30:19
%S 1,1,3,6,12,23,45,80,145,256,446,761,1292,2154,3568,5842,9485,15261,
%T 24386,38647,60867,95212,148052,228860,351899,538186,819105,1240704,
%U 1870886,2808888,4199880,6254577,9279179,13715740,20202040,29654210,43386131,63274874
%N Expansion of Product_{k>=1} ((1-x^(4*k))/(1-x^k))^k.
%H Vaclav Kotesovec, <a href="/A285262/b285262.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n) ~ exp(3^(4/3) * (5*Zeta(3))^(1/3) * n^(2/3) / 4) * (5*Zeta(3))^(1/6) / (2^(7/6) * 3^(1/3)* sqrt(Pi) * n^(2/3)).
%t nmax = 40; CoefficientList[Series[Product[((1-x^(4*k))/(1-x^k))^k, {k,1,nmax}], {x,0,nmax}], x]
%Y Cf. A026007, A263346, A285263.
%Y Cf. A285215.
%K nonn
%O 0,3
%A _Vaclav Kotesovec_, Apr 15 2017