login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of g.f. Product_{j>=1} 1/(1-y*x^j)^A000009(j), triangle T(n,k), n>=0, 0<=k<=n, read by rows.
15

%I #37 Feb 22 2023 10:02:40

%S 1,0,1,0,1,1,0,2,1,1,0,2,3,1,1,0,3,4,3,1,1,0,4,8,5,3,1,1,0,5,11,10,5,

%T 3,1,1,0,6,18,16,11,5,3,1,1,0,8,25,29,18,11,5,3,1,1,0,10,38,44,34,19,

%U 11,5,3,1,1,0,12,52,72,55,36,19,11,5,3,1,1

%N Expansion of g.f. Product_{j>=1} 1/(1-y*x^j)^A000009(j), triangle T(n,k), n>=0, 0<=k<=n, read by rows.

%H Alois P. Heinz, <a href="/A285229/b285229.txt">Rows n = 0..200, flattened</a>

%H <a href="/index/Mu#multiplicative_completely">Index entries for triangles generated by the Multiset Transformation</a>

%F G.f.: Product_{j>=1} 1/(1-y*x^j)^A000009(j).

%e T(n,k) is the number of multisets of exactly k partitions of positive integers into distinct parts with total sum of parts equal to n.

%e T(4,1) = 2: {4}, {31}.

%e T(4,2) = 3: {3,1}, {21,1}, {2,2}.

%e T(4,3) = 1: {2,1,1}.

%e T(4,4) = 1: {1,1,1,1}.

%e Triangle T(n,k) begins:

%e 1;

%e 0, 1;

%e 0, 1, 1;

%e 0, 2, 1, 1;

%e 0, 2, 3, 1, 1;

%e 0, 3, 4, 3, 1, 1;

%e 0, 4, 8, 5, 3, 1, 1;

%e 0, 5, 11, 10, 5, 3, 1, 1;

%e 0, 6, 18, 16, 11, 5, 3, 1, 1;

%e 0, 8, 25, 29, 18, 11, 5, 3, 1, 1;

%e 0, 10, 38, 44, 34, 19, 11, 5, 3, 1, 1;

%e 0, 12, 52, 72, 55, 36, 19, 11, 5, 3, 1, 1;

%e 0, 15, 75, 110, 96, 60, 37, 19, 11, 5, 3, 1, 1;

%e ...

%p with(numtheory):

%p g:= proc(n) option remember; `if`(n=0, 1, add(add(

%p `if`(d::odd, d, 0), d=divisors(j))*g(n-j), j=1..n)/n)

%p end:

%p b:= proc(n, i) option remember; expand(

%p `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*

%p x^j*binomial(g(i)+j-1, j), j=0..n/i))))

%p end:

%p T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)):

%p seq(T(n), n=0..16);

%t L[n_] := QPochhammer[x^2]/QPochhammer[x] + O[x]^n;

%t A[n_] := Module[{c = L[n]}, CoefficientList[#, y]& /@ CoefficientList[ 1/Product[(1 - x^k*y + O[x]^n)^SeriesCoefficient[c, {x, 0, k}], {k, 1, n}], x]];

%t A[12] // Flatten (* _Jean-François Alcover_, Jan 19 2020, after _Andrew Howroyd_ *)

%t g[n_] := g[n] = If[n==0, 1, Sum[Sum[If[OddQ[d], d, 0], {d, Divisors[j]}]* g[n - j], {j, 1, n}]/n];

%t b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[b[n - i*j, i - 1]*x^j* Binomial[g[i] + j - 1, j], {j, 0, n/i}]]];

%t T[n_] := CoefficientList[b[n, n] + O[x]^(n+1), x];

%t T /@ Range[0, 16] // Flatten (* _Jean-François Alcover_, Dec 14 2020, after _Alois P. Heinz_ *)

%o (PARI)

%o L(n)={eta(x^2 + O(x*x^n))/eta(x + O(x*x^n))}

%o A(n)={my(c=L(n), v=Vec(1/prod(k=1, n, (1 - x^k*y + O(x*x^n))^polcoef(c,k)))); vector(#v, n, Vecrev(v[n],n))}

%o {my(T=A(12)); for(n=1, #T, print(T[n]))} \\ _Andrew Howroyd_, Dec 29 2019

%Y Columns k=0..10 give: A000007, A000009 (for n>0), A320787, A320788, A320789, A320790, A320791, A320792, A320793, A320794, A320795.

%Y Row sums give A089259.

%Y T(2n,n) give A285230.

%Y Cf. A061260, A360763.

%K nonn,tabl

%O 0,8

%A _Alois P. Heinz_, Apr 14 2017