login
A285183
Nearest integer to n*omega(n)/phi(n).
2
0, 2, 2, 2, 1, 6, 1, 2, 2, 5, 1, 6, 1, 5, 4, 2, 1, 6, 1, 5, 4, 4, 1, 6, 1, 4, 2, 5, 1, 11, 1, 2, 3, 4, 3, 6, 1, 4, 3, 5, 1, 11, 1, 4, 4, 4, 1, 6, 1, 5, 3, 4, 1, 6, 3, 5, 3, 4, 1, 11, 1, 4, 4, 2, 3, 10, 1, 4, 3, 9, 1, 6, 1, 4, 4, 4, 3, 10, 1, 5, 2, 4, 1, 11, 3, 4, 3, 4, 1, 11, 3, 4, 3, 4, 3, 6
OFFSET
1,2
COMMENTS
n*omega(n)/phi(n) appears in certain bounds of Erdős for the Jacobsthal function g(n) (A048669).
REFERENCES
József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter I, p. 34, section I.32.3.
MAPLE
Digits:=30;
A001221 := proc(n) nops(numtheory[factorset](n)) end proc:
with(numtheory);
f:=n->round(n*A001221(n)/phi(n));
t1:=[seq(f(n), n=1..130)];
MATHEMATICA
Round[Table[(n PrimeNu[n] + 1/2)/EulerPhi[n], {n, 1, 100}]] (* Vincenzo Librandi, Apr 21 2017 - confirmed by Giovanni Resta *)
PROG
(Magma) [Round(n*#PrimeDivisors(n)/EulerPhi(n)): n in [1..100]] // Vincenzo Librandi, Apr 21 2017
(PARI) a(n) = {my(f = factor(n)); round(n*omega(f)/eulerphi(f)); } \\ Amiram Eldar, Apr 25 2024
CROSSREFS
Cf. A000010 (phi), A001221 (omega), A048669.
Sequence in context: A109978 A114293 A295691 * A255399 A181830 A352736
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 19 2017
STATUS
approved