login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285072
Triangle read by rows: coefficients of the Laplacian polynomial of the n-path graph P_n.
1
0, -1, 0, -2, 1, 0, -3, 4, -1, 0, -4, 10, -6, 1, 0, -5, 20, -21, 8, -1, 0, -6, 35, -56, 36, -10, 1, 0, -7, 56, -126, 120, -55, 12, -1, 0, -8, 84, -252, 330, -220, 78, -14, 1, 0, -9, 120, -462, 792, -715, 364, -105, 16, -1, 0, -10, 165, -792, 1716, -2002, 1365, -560, 136, -18, 1
OFFSET
1,4
COMMENTS
Version of A053122 with row-ending 0's and differing signs.
LINKS
Eric Weisstein's World of Mathematics, Path Graph
Eric Weisstein's World of Mathematics, Laplacian Polynomial
FORMULA
T(n,k) = (-1)^(k+1)*binomial[n+k,2*k+1]; 0 <= n <= k - Detlef Meya, Oct 09 2023
EXAMPLE
Table starts:
0
-1 0
-2 1 0
-3 4 -1 0
-4 10 -6 1 0
-5 20 -21 8 -1 0
-6 35 -56 36 -10 1 0
-7 56 -126 120 -55 12 -1 0
-8 84 -252 330 -220 78 -14 1 0
-9 120 -462 792 -715 364 -105 16 -1 0
MAPLE
S := proc(n, k) option remember;
if n <= k then 0 elif k = 0 then (-1)^n*n
else S(n-1, k-1) - S(n-2, k) - 2*S(n-1, k) fi end:
T := (n, k) -> (-1)^(n+1)*S(n, k):
seq(seq(T(n, k), k=0..n), n=0..10); # Peter Luschny, Apr 03 2020
MATHEMATICA
CoefficientList[Table[CharacteristicPolynomial[KirchhoffMatrix[PathGraph[Range[n]]], x], {n, 10}], x] // Flatten
CoefficientList[LinearRecurrence[{2 - x, -1}, {-x, (-2 + x) x}, 10], x] // Flatten
CoefficientList[Table[(-1)^(n + 1) x^(1/2) ChebyshevU[2 n - 1, -Sqrt[x]/2], {n, 10}], x] // Flatten
CoefficientList[Table[(2^-n ((2 - Sqrt[-4 + x] Sqrt[x] - x)^n - (2 + Sqrt[-4 + x] Sqrt[x] - x)^n))/Sqrt[(-4 + x)/x], {n, 10}] // Expand // FullSimplify, x] // Flatten
T[n_, k_]:=(-1)^(k+1)*Binomial[n+k, 2*k+1]; Flatten[Table[T[n, k], {n, 0, 10}, {k, 0, n}]] (* Detlef Meya, Oct 09 2023 *)
PROG
(Sage) # uses[riordan_square from A321620]
# Returns the triangle as a matrix.
riordan_square(-x/(1 - x)^2, 9) # Peter Luschny, Apr 03 2020
CROSSREFS
Cf. A053122 (version lacking row-ending 0's and with differing signs).
Cf. A321620.
Sequence in context: A095884 A342240 A128908 * A300454 A155112 A368099
KEYWORD
sign,easy,tabl
AUTHOR
Eric W. Weisstein, Apr 09 2017
STATUS
approved