OFFSET
0,2
COMMENTS
a(n-1) and a(n+1) are the solutions for c if b=a(n) in (b^2+c^2)/(b*c+1)=576 and there are no other pairs of solutions apart from consecutive pairs of terms in this sequence.
LINKS
Colin Barker, Table of n, a(n) for n = 0..350
Index entries for linear recurrences with constant coefficients, signature (576,-1).
FORMULA
a(n) = 576*a(n-1)-a(n-2).
a(n) = 12/(17*sqrt(287))*(((-1/(288+17287))^(n))+((288+(17*sqrt(287)))^(n))).
G.f.: 24*x/(1-576*x+x^2) . - R. J. Mathar, Apr 10 2017
MATHEMATICA
nxt[{a_, b_}]:={b, 576b-a}; NestList[nxt, {0, 24}, 20][[;; , 1]] (* or *) LinearRecurrence[{576, -1}, {0, 24}, 20] (* Harvey P. Dale, Jul 16 2024 *)
PROG
(PARI) concat(0, Vec(24*x/(1-576*x+x^2) + O(x^20))) \\ Colin Barker, Apr 10 2017
CROSSREFS
KEYWORD
nonn,easy,less
AUTHOR
Kyle Degen, Apr 06 2017
EXTENSIONS
a(8)-a(12) from Giovanni Resta, Apr 10 2017
STATUS
approved