%I #17 Dec 19 2022 09:42:08
%S 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,2,1,2,1,2,1,4,1,6,1,5,
%T 1,8,1,12,1,20,2,19,3,17,4,24,4,34,7,42,1,42,4,52,4,62,4,68,7,81,8,70,
%U 14,101,13,100,16,112,14
%N a(n) is the number of self-conjugate partitions of n which represent Chomp positions with Sprague-Grundy value 3.
%C The number of all Chomp positions with Sprague-Grundy value 3 are given in A284689.
%D P. M. Grundy, Mathematics and games, Eureka 2 (1939), 6-8; reprinted (1964), Eureka 27, 9-11.
%H Thomas S. Ferguson, <a href="https://www.mina.moe/wp-content/uploads/2018/05/GAME-THEORY-Thomas-S.Ferguson.pdf">Game Theory</a> (lecture notes + exercise questions for a course on Combinatorial Game Theory).
%H P. M. Grundy, <a href="/A002188/a002188.pdf">Mathematics and games</a>, Eureka (The Archimedeans' Journal), No. 2, 1939, pp. 6-8. [Annotated scanned copy. My former colleague and coauthor Florence Jessie MacWilliams (nee Collinson), who was a student at Cambridge University in 1939, gave me this journal. - _N. J. A. Sloane_, Nov 17 2018]
%H R. Sprague, <a href="https://www.jstage.jst.go.jp/article/tmj1911/41/0/41_0_438/_article">Über mathematische Kampfspiele</a>, Tohoku Math. J. 41 (1936), 438-444.
%H R. Sprague, <a href="https://www.jstage.jst.go.jp/article/tmj1911/43/0/43_0_351/_article">Über zwei Abarten von Nim</a>, Tohoku Math. J. 43 (1937), 351-354.
%Y Cf. A112471, A112472, A112473, A284689.
%K nonn
%O 1,24
%A _Thomas J Wolf_, Apr 06 2017