Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #14 Apr 07 2017 10:40:25
%S 1,-1,-31,-212,-284,4935,43719,160002,-96747,-4914512,-31358932,
%T -94515285,97642670,2823746182,16834776254,51617810512,-11233909783,
%U -1137004349695,-7267899354808,-25263858110877,-24537905293857,319397811973578,2523465326904492
%N Expansion of Product_{k>=1} 1/(1+x^k)^(k^5) in powers of x.
%H Seiichi Manyama, <a href="/A284899/b284899.txt">Table of n, a(n) for n = 0..2647</a>
%F a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A284927(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Apr 06 2017
%t CoefficientList[Series[Product[1/(1 + x^k)^(k^5) , {k, 40}], {x, 0, 40}], x] (* _Indranil Ghosh_, Apr 05 2017 *)
%o (PARI) x= 'x + O('x^40); Vec(prod(k=1, 40, 1/(1 + x^k)^(k^5))) \\ _Indranil Ghosh_, Apr 05 2017
%Y Cf. A248884.
%Y Product_{k>=1} 1/(1+x^k)^(k^m): A081362 (m=0), A255528 (m=1), A284896 (m=2), A284897 (m=3), A284898 (m=4), this sequence (m=5).
%K sign
%O 0,3
%A _Seiichi Manyama_, Apr 05 2017