%I #13 Apr 07 2017 10:40:12
%S 1,-1,-7,-20,-8,99,455,958,715,-3606,-17450,-44157,-61852,19546,
%T 419786,1442212,3084950,3756436,-2155907,-27112107,-88277693,
%U -187777531,-251308697,-5153980,1182558343,4299818445,9988792754,16075200671,12020651310,-29802956283
%N Expansion of Product_{k>=1} 1/(1+x^k)^(k^3) in powers of x.
%H Seiichi Manyama, <a href="/A284897/b284897.txt">Table of n, a(n) for n = 0..7180</a>
%F a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A284900(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Apr 06 2017
%t CoefficientList[Series[Product[1/(1 + x^k)^(k^3) , {k, 40}], {x, 0, 40}], x] (* _Indranil Ghosh_, Apr 05 2017 *)
%o (PARI) x= 'x + O('x^40); Vec(prod(k=1, 40, 1/(1 + x^k)^(k^3))) \\ _Indranil Ghosh_, Apr 05 2017
%Y Cf. A248882.
%Y Product_{k>=1} 1/(1+x^k)^(k^m): A081362 (m=0), A255528 (m=1), A284896 (m=2), this sequence (m=3), A284898 (m=4), A284899 (m=5).
%K sign
%O 0,3
%A _Seiichi Manyama_, Apr 05 2017