login
Positions of 0 in A284881.
5

%I #7 Jun 25 2017 07:40:04

%S 4,6,10,12,14,16,22,24,28,30,32,34,40,42,44,46,52,54,58,60,64,66,68,

%T 70,76,78,82,84,86,88,94,96,98,100,106,108,112,114,118,120,122,124,

%U 130,132,134,136,142,144,148,150,154,156,158,160,166,168,172,174,176

%N Positions of 0 in A284881.

%C This sequence and A284882 and A284884 form a partition of the positive integers. For n>=1, we have 3n-a(n) in {0,1}, 3*n+1-A284883(n) in {0,1,2,3}, and 3*n-1-A284884(n) in {0,1,2}.

%C A284881 = (1,-1,1,0,-1,0,1,-1,1,0,-1,0,1,0,...); thus

%C A284882 = (2,5,8,11,15,18,...)

%C A284883 = (4,6,10,12,14,16,...)

%C A284884 = (1,3,7,9,13,17,...).

%H Clark Kimberling, <a href="/A284883/b284883.txt">Table of n, a(n) for n = 1..10000</a>

%t s = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {0, 1, 1, 0}}] &, {0}, 6] (* A284878 *)

%t d = Differences[s] (* A284881 *)

%t Flatten[Position[d, -1]] (* A284882 *)

%t d2 = Flatten[Position[d, 0]] (* A284883 *)

%t Flatten[Position[d, 1]] (* A284884 *)

%t d2/2 (* A284885 *)

%Y Cf. A284793, A284881, A284882, A284884, A284885.

%K nonn,easy

%O 1,1

%A _Clark Kimberling_, Apr 16 2017