login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Ai(0), where Ai is the Airy function of the first kind.
4

%I #10 Jan 05 2025 09:40:01

%S 3,5,5,0,2,8,0,5,3,8,8,7,8,1,7,2,3,9,2,6,0,0,6,3,1,8,6,0,0,4,1,8,3,1,

%T 7,6,3,9,7,9,7,9,1,7,4,1,9,9,1,7,7,2,4,0,5,8,3,3,2,6,5,1,0,3,0,0,8,1,

%U 0,0,4,2,4,5,0,1,2,6,7,1,2,9,5,7,1,7,4,2,4,6,0,5,4,0,4,0,2,7,1,6,8,8,4,2,0

%N Decimal expansion of Ai(0), where Ai is the Airy function of the first kind.

%D Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 56, page 559.

%H Simon Plouffe, <a href="http://plouffe.fr/simon/constants/airyc1.txt">Airy Functions Constant C1</a>.

%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/AiryFunctions.html">Airy Functions</a>.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Airy_function">Airy Function</a>.

%F Ai(0) = 1/(3^(2/3)*Gamma(2/3)).

%e 0.35502805388781723926006318600418317639797917419917724058332651030081...

%t RealDigits[AiryAi[0], 10, 105][[1]]

%o (PARI) airy(0)[1] \\ _Charles R Greathouse IV_, Apr 26 2019

%Y Cf. A096714, A096715, A269892, A269893, A073006 (Gamma(2/3)), A284868 (Ai'(0)).

%K nonn,cons,changed

%O 0,1

%A _Jean-François Alcover_, Apr 04 2017