login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Write in base k, complement, reverse. Case k = 3.
2

%I #15 Feb 05 2022 02:15:15

%S 2,1,0,7,4,1,6,3,0,25,16,7,22,13,4,19,10,1,24,15,6,21,12,3,18,9,0,79,

%T 52,25,70,43,16,61,34,7,76,49,22,67,40,13,58,31,4,73,46,19,64,37,10,

%U 55,28,1,78,51,24,69,42,15,60,33,6,75,48,21,66,39,12,57,30

%N Write in base k, complement, reverse. Case k = 3.

%H Harvey P. Dale, <a href="/A284797/b284797.txt">Table of n, a(n) for n = 0..1000</a>

%e a(9) = 25 because 9 in base 3 is 100, its complement in base 3 is 122 and the digit reverse is 221 that is 25 in base 10.

%p P:=proc(q,h) local a,b,k,n; print(h-1); for n from 1 to q do a:=convert(n,base,h); b:=0;

%p for k from 1 to nops(a) do a[k]:=h-1-a[k]; b:=h*b+a[k]; od; print(b); od; end: P(10^2,3);

%t Table[FromDigits[Reverse[2-IntegerDigits[n,3]],3],{n,0,70}] (* _Harvey P. Dale_, Sep 08 2019 *)

%o (Python)

%o from gmpy2 import digits

%o def A284797(n): return -int((s:=digits(n,3)[::-1]),3)-1+3**len(s) # _Chai Wah Wu_, Feb 04 2022

%Y Cf. A036044, A267193, A284798.

%K nonn,base,easy

%O 0,1

%A _Paolo P. Lava_, Apr 03 2017