login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (-1)^n * A284019(n).
2

%I #14 Apr 03 2017 01:08:09

%S 0,0,0,-1,0,0,1,-1,1,0,-1,-1,0,0,2,-1,1,-1,0,0,0,1,-2,-2,-1,1,1,0,0,0,

%T 4,-1,0,-2,2,1,-1,-1,-1,1,-1,1,-1,2,-2,3,-3,-5,-4,4,1,2,-4,0,-1,3,1,1,

%U 0,0,0,0,8,-1,-2,-4,0,3,2,-2,-1,1,0,2,-2,3,-1,4,-4

%N a(n) = (-1)^n * A284019(n).

%H Altug Alkan, <a href="/A284606/b284606.txt">Table of n, a(n) for n = 1..10000</a>

%H Altug Alkan, <a href="/A284606/a284606.png">Alternative Scatterplot of A284606</a>

%F a(n) = (-1)^n * (A004001(n) - A005185(n)).

%e a(4) = -1 since a(4) = (-1)^4 * (A004001(4) - A005185(4)) = 2 - 3 = -1

%p A005185:= proc(n) option remember; procname(n-procname(n-1)) +procname(n-procname(n-2)) end proc:

%p A005185(1):= 1: A005185(2):= 1:

%p A004001:= proc(n) option remember; procname(procname(n-1)) +procname(n-procname(n-1)) end proc:

%p A004001(1):= 1: A004001(2):= 1:

%p A284606:= map((-1)^i * (A004001 - A005185), [$1..1000]):

%p seq(A284606[i], i=1..1000); # _Altug Alkan_, Apr 01 2017

%t a[n_] := a[n] = If[n <= 2, 1, a[a[n - 1]] + a[n - a[n - 1]]]; b[1] = b[2] = 1; b[n_] := b[n] = b[n - b[n - 1]] + b[n - b[n - 2]]; Table[(-1)^n*(a@ n - b@ n), {n, 87}] (* _Michael De Vlieger_, Apr 02 2017, after _Robert G. Wilson v_ at A004001 *)

%o (PARI) q=vector(10000); h=vector(10000); q[1]=q[2]=1; for(n=3, #q, q[n]=q[n-q[n-1]]+q[n-q[n-2]]); h[1]=h[2]=1; for(n=3, #h, h[n]=h[h[n-1]]+h[n-h[n-1]]); vector(10000, n, (-1)^n*(h[n]-q[n]))

%Y Cf. A004001, A005185, A284019.

%K sign,look

%O 1,15

%A _Altug Alkan_, Mar 30 2017