login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Product / LCM of the lengths of 1-runs in binary representation of n: a(n) = A227349(n) / A284569(n).
4

%I #6 Apr 15 2017 09:17:12

%S 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,

%T 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,

%U 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,2,1,1,2,1,1,1,1,2,2,2,1,2,1,1,1,1,1,1,1,3,1

%N Product / LCM of the lengths of 1-runs in binary representation of n: a(n) = A227349(n) / A284569(n).

%H Antti Karttunen, <a href="/A284562/b284562.txt">Table of n, a(n) for n = 0..10922</a>

%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>

%F a(n) = A227349(n) / A284569(n).

%o (Scheme) (define (A284562 n) (/ (A227349 n) (A284569 n)))

%Y Cf. A227349, A284569, A284558.

%K nonn,base

%O 0,28

%A _Antti Karttunen_, Apr 14 2017