login
A284500
Expansion of Product_{k>=0} (1 - x^(7*k+2)) in powers of x.
6
1, 0, -1, 0, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, -1, 0, 2, 0, -1, 0, 0, -1, 0, 2, 0, -1, 0, 0, -1, 0, 3, 0, -2, 0, 0, -1, 0, 3, 0, -3, 0, 1, -1, 0, 4, 0, -4, 0, 1, -1, 0, 4, 0, -5, 0, 2, -1, 0, 5, 0, -7, 0, 3, -1, 0, 5, 0, -8, 0, 5, -1, -1
OFFSET
0,26
LINKS
FORMULA
a(n) = -(1/n)*Sum_{k=1..n} A284443(k)*a(n-k), a(0) = 1.
MAPLE
S:= series(mul(1-x^(7*k+2), k=0..(100-2)/7), x, 101):
seq(coeff(S, x, i), i=0..100); # Robert Israel, Jan 17 2023
MATHEMATICA
CoefficientList[Series[Product[1 - x^(7k + 2), {k, 0, 100}], {x, 0, 100}], x] (* Indranil Ghosh, Mar 28 2017 *)
PROG
(PARI) Vec(prod(k=0, 100, 1 - x^(7*k + 2)) + O(x^101)) \\ Indranil Ghosh, Mar 28 2017
CROSSREFS
Cf. Product_{k>=0} (1 - x^(7*k+m)): A284499 (m=1), this sequence (m=2), A284501 (m=3), A284502 (m=4), A284503 (m=5), A284504 (m=6).
Cf. A281458.
Sequence in context: A227740 A284503 A281455 * A281458 A178781 A287174
KEYWORD
sign,look
AUTHOR
Seiichi Manyama, Mar 28 2017
STATUS
approved