login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284496
a(n) is the least number such that bigomega(a(n)) = bigomega(R(a(n)))/n, where R(n) is the digit reverse of n and bigomega(n) is the number of prime divisors of n counted with multiplicity.
2
2, 19, 29, 61, 23, 487, 821, 2557, 2749, 4201, 25747, 61843, 211643, 614881, 238673, 272059, 270131, 405719, 8239969, 42037283, 44922991, 44166589, 67719697, 61277761, 253442899, 2321783617, 4471131827, 4640384471, 40782386369, 4055086219, 25135138387, 63558323051
OFFSET
1,1
COMMENTS
All values are prime.
FORMULA
Solutions of the equation A001222(n) = A001222(A004086(n))/n.
EXAMPLE
bigomega(2) = 1. Its digit reverse is again 2 and bigomega(2) = 1 = 1 * 1;
bigomega(19) = 1 and bigomega(91) = 2 = 2 * 1;
bigomega(29) = 1 and bigomega(92) = 3 = 3 * 1;
bigomega(61) = 1 and bigomega(16) = 4 = 4 * 1; etc.
MAPLE
with(numtheory): R:=proc(w) local x, y, z; x:=w; y:=0; for z from 1 to ilog10(x)+1 do y:=10*y+(x mod 10); x:=trunc(x/10); od; y; end:
P:=proc(q) local k, n; for k from 1 to q do for n from 2 to q do
if k*bigomega(n)=bigomega(R(n)) then print(n); break; fi; od; od; end: P(10^9);
MATHEMATICA
rev[n_] := FromDigits@ Reverse@ IntegerDigits@ n; a[n_] := Block[{k, v}, For[k=2, Mod[v = PrimeOmega@ rev@ k, n] > 0 || v != n PrimeOmega@ k, k++]; k]; Array[a, 12] (* Giovanni Resta, Mar 29 2017 *)
PROG
(PARI) genit(maxx)={for(num=1, maxx, soln=0; forprime(p=2, 9E20, f=Vecrev(Str(p)); g=eval(concat(f)); if(bigomega(g)==num, print(num, " ", p); soln=1; break)); if(soln<1, print("increase max prime"))); } \\ Bill McEachen, Mar 30 2017
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, Mar 28 2017
EXTENSIONS
a(23)-a(32) from Giovanni Resta, Mar 29 2017
a(26) corrected by Bill McEachen, Mar 30 2017
STATUS
approved