Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Oct 09 2019 13:35:16
%S 1,5,111,5127,400593,47311677,7857786015,1745000283087,
%T 499180661754849,178734707493557301,78294815164675006479,
%U 41186656484051421462615,25619826402721039367943729,18600984174200732870460447213,15588291843672510150758754601407
%N Number of self-avoiding planar walks starting at (0,0), ending at (n,n), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) with the restriction that (0,1) is never used below the diagonal and (1,0) is never used above the diagonal.
%H Alois P. Heinz, <a href="/A284461/b284461.txt">Table of n, a(n) for n = 0..224</a>
%H Alois P. Heinz, <a href="/A284461/a284461.gif">Animation of a(2)=111 walks</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path">Lattice path</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Self-avoiding_walk">Self-avoiding walk</a>
%F a(n) = A284230(2n).
%F a(n) = Sum_{k=2n..n*(2n+3)} A284414(2n,k).
%p b:= proc(n) option remember; `if`(n<2, n+1,
%p (n+irem(n, 2))*b(n-1)+(n-1)*b(n-2))
%p end:
%p a:= n-> b(2*n):
%p seq(a(n), n=0..15);
%p # second Maple program:
%p a:= proc(n) option remember; `if`(n<2, 4*n+1,
%p ((2*n+1)^2-2)*a(n-1)-(4*n-6)*n*a(n-2))
%p end:
%p seq(a(n), n=0..15);
%t a[n_] := a[n] = If[n<2, 4n+1, ((2n+1)^2-2) a[n-1] - (4n-6) n a[n-2]];
%t Table[a[n], {n, 0, 15}] (* _Jean-François Alcover_, Jun 19 2017, after 2nd Maple program *)
%Y Bisection of A284230 (even part).
%Y Cf. A284414, A285673.
%K nonn,walk
%O 0,2
%A _Alois P. Heinz_, Mar 27 2017