login
A284301
Decimal representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 865", based on the 5-celled von Neumann neighborhood.
5
1, 0, 3, 5, 10, 29, 42, 119, 171, 477, 682, 1909, 2730, 7637, 10922, 30677, 43946, 122229, 174762, 488829, 699066, 1955159, 2796219, 7853397, 11250366, 31290717, 44739306, 125138261, 178956970, 500520277, 715827882, 2010469717, 2880088746, 8010421589
OFFSET
0,3
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Chai Wah Wu, May 04 2024: (Start)
a(n) = a(n-2) + 256*a(n-8) - 256*a(n-10) for n > 36.
G.f.: (16384*x^36 + 2048*x^35 - 11264*x^34 - 2048*x^33 - 768*x^32 + 512*x^31 - 256*x^30 + 1536*x^29 - 4160*x^28 - 2056*x^27 + 44*x^26 + 8*x^25 + 3*x^24 - 2*x^23 + x^22 - 38*x^21 + 16*x^20 + 8*x^19 - 96*x^17 - 416*x^13 + 256*x^12 + 152*x^11 - x^10 + 358*x^9 - 127*x^8 + 90*x^7 + 32*x^6 + 24*x^5 + 7*x^4 + 5*x^3 + 2*x^2 + 1)/(256*x^10 - 256*x^8 - x^2 + 1). (End)
MATHEMATICA
CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code = 865; stages = 128;
rule = IntegerDigits[code, 2, 10];
g = 2 * stages + 1; (* Maximum size of grid *)
a = PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca = a;
ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k = (Length[ca[[1]]] + 1)/2;
ca = Table[Table[Part[ca[[n]] [[j]], Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]] [[i]], Range[1, i]], 2], {i, 1, stages - 1}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Mar 24 2017
STATUS
approved