login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (Sum_{k=1..n} q(k+1-q(k))) mod n where q(k) = A005185(k).
3

%I #27 Mar 23 2017 10:08:17

%S 0,0,0,0,1,2,3,5,7,9,1,2,4,7,9,12,15,0,3,6,9,12,17,20,0,4,8,12,16,22,

%T 26,31,4,9,14,20,26,31,37,3,8,14,20,26,32,38,1,4,11,18,23,30,39,46,53,

%U 6,12,20,28,36,44,56,1,9,21,28,36,46,57,68,9,20,30,39,48,60,69,2,12

%N a(n) = (Sum_{k=1..n} q(k+1-q(k))) mod n where q(k) = A005185(k).

%C Sequence represents d(n, 1, 1) where d(n, i, j) = (Sum_{k=1..n} q(k+j-q(k))) mod (n*i) where q(k) = A005185(k).

%H Altug Alkan, <a href="/A284173/b284173.txt">Table of n, a(n) for n = 1..10000</a>

%H Robert Israel, <a href="/A284173/a284173_1.png">Illustration Of Residue Classes Modulo 8</a>

%F a(n) = A280706(n) mod n. - _Antti Karttunen_, Mar 22 2017

%p N:= 1000: # to get a(1) to a(N)

%p B[1]:= 1:

%p B[2]:= 1:

%p for n from 3 to N do

%p B[n]:= B[n-B[n-1]] + B[n-B[n-2]];

%p od:

%p seq(add(B[k+1-B[k]], k=1..n) mod n, n=1..N); # _Robert Israel_, Mar 22 2017

%t q[n_]:=If[n<3, 1, q[n - q[n - 1]] + q[n - q[n - 2]]]; a[n_]:=Mod[Sum[q[k + 1 - q[k]],{k, n}], n]; Table[a[n], {n, 100}] (* _Indranil Ghosh_, Mar 21 2017 *)

%o (PARI) a=vector(1000); a[1]=a[2]=1; for(n=3, #a, a[n]=a[n-a[n-1]]+a[n-a[n-2]]); vector(#a, n, sum(k=1, n, a[k+1-a[k]]) % n)

%o (Scheme) (define (A284173 n) (modulo (A280706 n) n)) ;; Other code as in A280706, A283467 and A005185 - _Antti Karttunen_, Mar 22 2017

%Y Cf. A005185, A280706, A283025, A283467, A283509.

%K nonn

%O 1,6

%A _Altug Alkan_, Mar 21 2017