login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of zeros in the left half-plane of the polynomial whose coefficients are the ordered divisors of n.
0

%I #10 Mar 22 2017 03:59:13

%S 0,1,1,2,1,1,1,1,2,1,1,3,1,1,1,2,1,3,1,3,1,1,1,5,2,1,1,3,1,5,1,3,1,1,

%T 1,4,1,1,1,5,1,3,1,3,3,1,1,5,2,3,1,3,1,3,1,5,1,1,1,7,1,1,3,4,1,3,1,3,

%U 1,5,1,7,1,1,3,3,1,3,1,5,2,1,1,7,1,1,1,3,1,7

%N Number of zeros in the left half-plane of the polynomial whose coefficients are the ordered divisors of n.

%C Let {d_1= 1, d_2, ..., d_q= n} be the ordered list of the q divisors of n. a(n) is the number of zeros in the left half-plane of the polynomial P(n,X) = Sum_{k=1..q} d_k * X^(k-1).

%C We observe that a(n) = A084115(n) except for n = 24, 30, 40, 48, 56, 60, 64, 70, 72, 80, 84, 90, ...

%e a(12) = 3 because the divisors of 12 are 1, 2, 3, 4, 6 and 12, hence P(12,X) = 1 + 2*X + 3*X^2 + 4*X^3 + 6*X^4 + 12*X^5, and the zeros are:

%e X1= -0.5711989847...,

%e X2= -0.2975767212... - 0.4961486201...*i,

%e X3= -0.2975767212... + 0.4961486201...*i,

%e X4= 0.3331762136... - 0.5699669416...*i,

%e X5= 0.3331762136... + 0.5699669416...*i, where i = sqrt(-1).

%e There are three zeros X1, X2 and X3 in the left half-plane.

%p with(numtheory): for n from 1 to 90 do:it:=0:

%p d:=divisors(n):n0:=nops(d):P:=add(op(i, d)*x^(i-1), i=1..n0):y:=[fsolve(P, x, complex)]:for m from 1 to nops(y) do:if Re(y[m])<0 then it:=it+1:else fi:od: printf(`%d, `, it):od:

%Y Cf. A084115.

%K nonn

%O 1,4

%A _Michel Lagneau_, Mar 21 2017